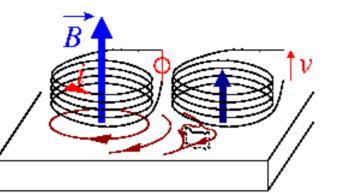
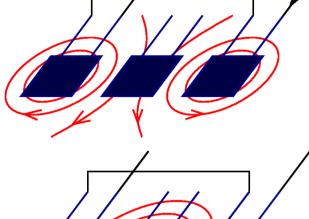
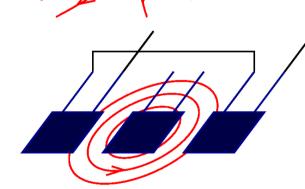
Non Destructive Evaluation of Small Defects using an Eddy Current Microcoil Sensor Array


Cyril RAVAT^{1,2,*}, Pierre-Yves JOUBERT¹, Yann LE BIHAN², Claude MARCHAND²

EMSA'08 8TH EUROPEAN MAGNETIC Sensors & Actuators

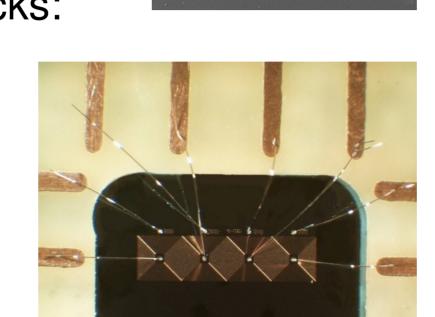

¹SATIE, ENS Cachan, CNRS, UniverSud, 61 av. du President Wilson, 94235 Cachan, FRANCE ²LGEP/SPEE Labs, CNRS UMR 8507, Supélec, Univ Paris Sud-P11, Univ Pierre et Marie Curie-P6, 11 rue Joliot-Curie, Platéau du Moulon, 91192 Gif-sur-Yvette, FRANCE *Corresponding author: cyril.ravat@lgep.supelec.fr

EC Measurements


Eddy current method: Transmission & Reception

New design of multisensor 1-D array

Central transmission Differential measurement

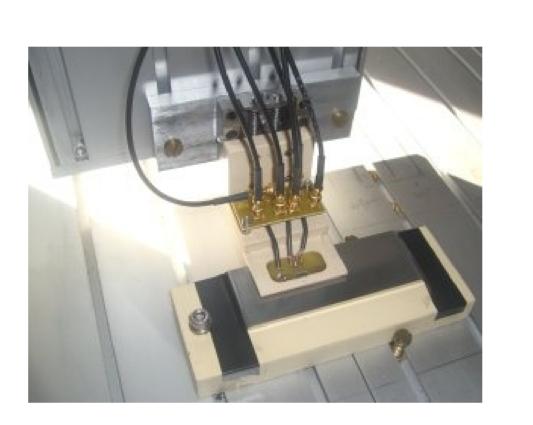


Central absolute measurement "Differential" transmission

Microcoils

- Silicon substrate
- Copper micromoulding
- Attached to an epoxy board
- Microbonding by a 25 µm diameter aluminium wire
- Dimensions of the tracks:
 - 8 µm in thickness
 - 5 µm in width
 - 5 µm in spacing
- 1x1 mm², square
- 1±0,1 μ H, 55±1 Ω

0.02



Signal representations 0.015 0.005 -0.005 -0.015 C-Scan Real part Complex signature

Here: 5MHz, 0.2x0.4x0.1 mm³ "parallel"

Experimental Set-up

- Nickel based alloy mockup ($\mu = 4\pi 10^{-7} \, \text{H m}^{-1}$; $\sigma = 0.76 \, \text{MS m}^{-1}$)
- 30 surface breaking rectilinear notches, 15 sets of dimensions
- 5 lengths (0.1 mm, 0.2 mm, 0.4 mm, 0.6 mm, 0.8 mm)
- 3 depths (0.1 mm, 0.2 mm, 0.4 mm)
- 1 width (0.1 mm)
- 2 orientations: perpendicular and parallel to the main orientation of the sensor array
- PC-controlled 3-axis robot; scan of surface with 0.1 mm step
- Frequency of excitation current: 1 to 10 MHz

Parametrization

- Each signature is extremely simplified: only three parameters define the shape
- Signature shape depends on defect dimensions
- Parameters:
- "Principal" amplitude M
- "Secondary" amplitude m
- Inclination angle α
- Method: how to find the best projection?

Minimization of $\Delta = \sum d((x_i, y_i), D)^2$, $D:(x, y) \rightarrow ay + bx = 0$ $\Delta = \sum \frac{|ax_i + by_i|}{a^2 + b^2} = \frac{1}{a^2 + b^2} \left[a^2 \sum x_i^2 + b^2 \sum y_i^2 + 2ab \sum x_i y_i \right]$

 $=\frac{n}{a^2+b^2}(a^2V(x)+b^2V(y)+2ab\cos(x,y))$ with V(x) variance, $\cos(x,y)$ covariance

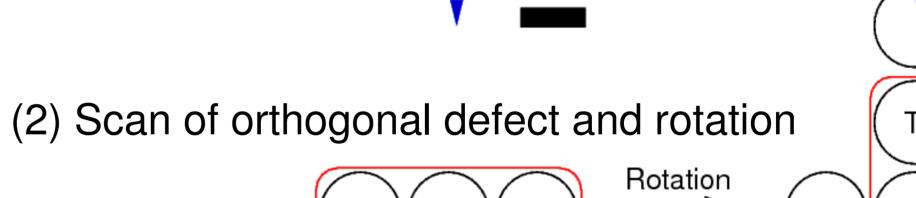
By derivation and normalisation:

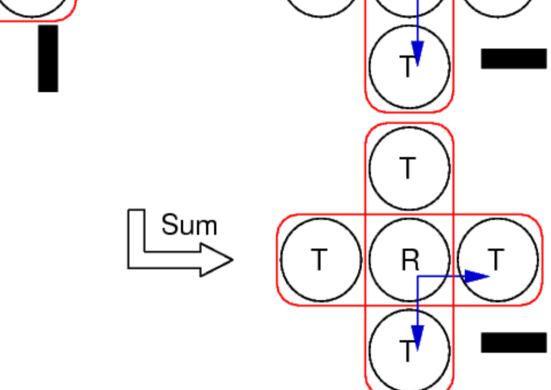
 $a = \frac{K}{\sqrt{1 + K^2}}$ and $b = \frac{1}{\sqrt{1 + K^2}}$ with $K = \frac{V(x) - V(y) - \sqrt{(V(x) - V(y))^2 + 4 \cos(x, y)^2}}{2 \cos(x, y)}$

Finally, $\alpha = \arctan(-K)$ $M = \text{amplitude}\left(\frac{x - Ky}{\sqrt{1 + K^2}}\right)$ $m = \text{amplitude}\left(\frac{Kx + y}{\sqrt{1 + K^2}}\right)$

Conclusions

- Evaluation of 15 defects with different dimensions are done thanks to an eddy current (EC) multicoil 1-D array. A new transmission-reception scheme is used, according to previous studies.
- EC complex signatures are visualized and parametrized, in order to both decrease the amount of data and characterized the evaluated defects. Results are promising:
- mean absolute errors are very low (0.05 mm in length, 0.03 mm in depth)
- 88% of EC signals give an estimated length with an error inferior to 0.05 mm
- 100% of EC signals give an estimated depth with an error inferior to 0.05 mm
- Further works will focus on the improvement in the characterization method. Decimation must be increased without decreasing characterization quality.




Characterization

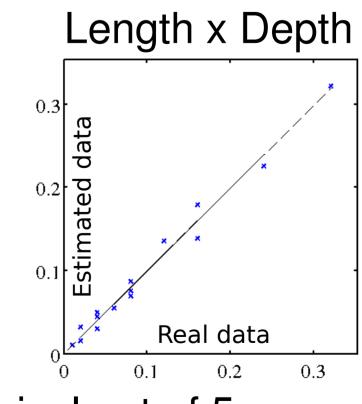
 Performed measurements allow evaluate behaviour of a 2-D 3x3 microcoil array

(1) Scan of parallel defect

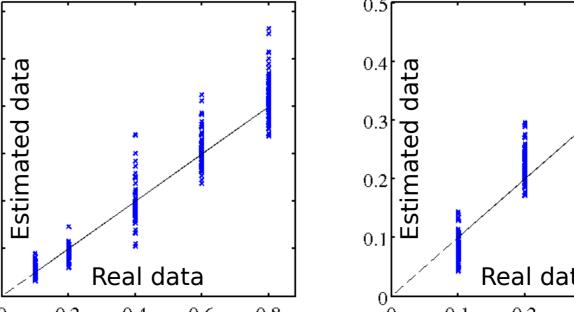
(3) Sum of 1 & 2

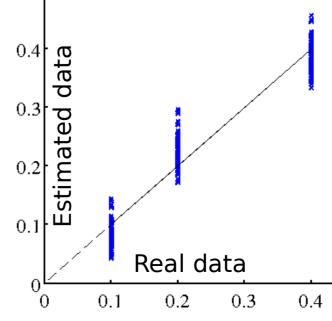
• Consequence: 12 parameters can be used $1 \rightarrow 3$: M1, M2, M3 $4 \rightarrow 6$: m1, m2, m3

 $7\rightarrow 9: \alpha 1, \alpha 2, \alpha 3$ $10\rightarrow 12: M1/M2, m1/m2, \alpha 2-\alpha 1$


• Dimensions to find: length and depth (all same width)

Correlations with dimensions


• Estimations by least-squares estimators: with $X_{test} = \{Param_i\}$ corresponding to a known Y, $\hat{a} = (X_{test}^T X_{test})^{-1} X_{test}^T Y$ and $\hat{Y} = X \hat{a}$


Length Real data

Depth 0.2 0.3 0.4

• In the case of decimated data with 1 pixel out of 5: Length x Depth Depth Length

Real data

Mean relative and absolute error:

15.8%,0.010mm² 14.4%,0.047mm 14.1%,0.025mm

• 88% of lengths and 100% of depths are in ±0.05mm.